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Hadron physics with LHCb

/ Boost
The LHC is the most abundant b
source of heavy quarks on Earth. bb production:
(forward!)

It allows for precision
measurements challenging the
Standard Model. O

LHCb studies lower-p_hadrons that

Side View EcAL HCAL
SPD/PS M3
RICH2 ) M2
T3

cluster in in the “forward region”
at low angle with respect to the
beam axis.
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Special at LHCb: the RICH detectors for hadron identification

To classify heavy hadron decays an outstanding capability of identifying hadrons is
necessary. The LHCb experiment uses two Ring Image Cherenkov (RICH) detectors
to separate pions, kaons and protons.

The Cherenkov angle is then converted into Differential Log Likelihoods.
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Why do we need simulation?

Nl P/pipeline.C P/trainMuon.p

FastQuantilelayer FastQuantilelLayer

sys.path.append(

Design detectors and experiments AddRandomFeatures AddRandomFeatures

‘ ef (model_path, loaded_model):
S = hSpy.File(os.path.join(model_path,
1 s[2]

Design selection stratees (e.g. for the trigger)

Evaluate selection efficiencies for
physics signal and backgrounds

Simulated events: -fi 13046}
p_TRUE_ID ==p_ID 13046 . . . . . .
Build statistical models for physics contributions
K_TRUE_ID == K_ID 049 u I I I I I u I

p_P > 3000 13012
pi_P > 400 13010 :\
PI_PT > 1000 0 _
KP > 1000 370 §’ 100 LHCb
K_PT > 400 3419) >
p_PT > 1000 262 2
(Pi_PT > 400 or K_PT > 400 or p_PT > 400) 2827
K_PT + p_PT + pi_PT > 2000 28217] 2
p_ETA <5.0 5 o — o
PLETA < 5.0 2827 = B —)[1\: K ]DK -
K_ETA <5.0 2620) o
mu_ETA <5 520 8
mu_P > 3000 2760) 5
mu_PT > 500 2560) > W ... .
Lc_PT + mu_PT > 3000 69 =
mu_isMuon == 1 125
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Event size of the LHC experiments

Different physics
Different experiment
Different data processing

Different needs in terms of
simulation.

LHCb focus on precision
measurements require very
large simulation samples
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Amplitude analysis: the example of the pentaquark
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needed.

Imperfection in the efficiency determination must
be negligible in front of the statistical uncertainty
obtained with 2.50 x 10° signal events.
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Standard simulation: the big picture

. \ Simulation | Reconstruction | o o :
5 i ! i | Selection & '
.| Physics generator i N : analysis |
. SR . . I _ . : :
AN J i — Tracking | ! !
%30 ! J ' | Centralized
e ) 2 : | : — event !
E Radiation-matter - ! | \ ' | selection !
- | interaction 5 .S " | Particle ID | | |
AN y T L | | |
B o = 1 1 ) 1 | 1
! baie | | | H . |
: . T £ : : ! | User-defined | !
: . — : : : ' | analysis i
| Electronics | *Taggin ' ' | procedure |
.| (digitization) i §8INg | p
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Parametric simulation

1 —
We know from statistics that we can B0 (a) Continuous
generate samples according to a given distribution
distribution, for example, through the Ll
inverse CDF method.

¢ X
We use machine learning to learn a 7 o x=F-1(u)
multidimensional equivalent of the (b) f Discrete
inverse of the cumulative F of the F(x) distribution
target distribution M S e M)
as a function of some parameter, e.g.
the momentum of a particle. 0 —'_l T T ——

Xp Xpi1
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Our ML building block

[ ]
v

—_— n-1(,,.

L = F (u7 p ) 777 *
— —— * g
Target Random Conditions

variable noise

Random Generative Adversarial Networks
noise
.. Some
Mol Fllns detector-related
L uantities

o Variational AutoEncoder 1
Conditions
(e.g. momentum)
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Approaches to ML in simulation

. \ Simulation | Reconstruction | o o :
| ! ! i | Selection &
.| Physics generator i N : analysis |
. N\ . . _ . ! !
| i — Tracking i : :
: 2 %30 ! J ' | Centralized
A G ) 2 : | : — event !
| Radi atter S ! : N\ ! ' | selection !
.| inter S S .| Particle ID :
N S — 2 < : : ) ! !
! = | i | | . i
: = 2 < T £ : : ! | User-defined | !
: . ——/ : : : ' | analysis !
| Electronics | *Taggin ' ' | procedure |
.| (digitization) i §8INg | p
| y, : | ' ' '

Only replace with ML parts of the radiation-matter interaction, in the showers.

S. Vallecorsa et al. EP) Web Conf., 214 (2019) 02010
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https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_02010/epjconf_chep2018_02010.html
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Approaches to ML in simulation
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Take advantage of the granularity of the calorimeter readout to simplify the network

F. Ratnikov et al. EP) Web Conf., 245 (2020) 02026
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Approaches to ML in simulation

Simulation

e : ! | : _ :
5 i ! i | Selection & '
| Physics generator : analysis |
AN - |
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Train the network to reproduce reconstructed quantities

A. Maevskiy et al. J. Phys.: Conf. Ser. 1525 012097 (2020)
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https://arxiv.org/abs/1905.11825
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Which approach is the best one?

Simulating the rad-matter interaction
does not change the philosophy of the
simulation: everything working with the
detailed simulation will also work when
replacing a detector with its
parametrization (full-featured simulation).

Unfortunately, small imperfections in the
parametrization may result into large errors
of the analysis level quantities at the end of
the reconstruction & analysis pipeline.
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Simulating the analysis level features
allows for exceptional-quality description of
the simulated analysis-level quantities
(possibly better than full simulation!!!) and it is
faster than the reconstruction step alone

(not to mention simulation)

But, collective features and those
depending on secondary particles are very
difficult to describe, making this simulation
“feature-limited”.
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And then? Which approach is the best one?

We aim at covering the majority of the analysis needs with an ultra-fast,
feature-limited simulation.

For analyses requiring collective features such as flavour tagging we will make
full-featured fast simulations available.

Finally, for those studies requiring to access to the raw data of the simulated detector,
or to perform detector studies, the detailed simulation will a totally viable option.
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Thinking again to amplitude analyses...

< 2200F
2000-_ * :g;:m H H . “u_ - ”
i ST e The six quantities composing our dataset are “simple
5 E —=— P(4300 . . oy
£t 4 ey kinematic quantities.
rooof- 2 Moo
oo 1 X Ao : "
wof. '\’M i The theoretical uncertainties on the decay model are large.
coob= o o -~ A(1830)
{2 ---4-- A(1890)
400 \ <eioee A(2100)
I w-= A(2110) . .
E The number of simulated events required to get a good

description with correlation in a 6-dimensional space is very
large.

Events/(15 MeV)
g 8 8

g

— Use ultra-fast simulation of analysis level-quantities
(possibly validating the projections with full simulation) to
assess efficiency and background contributions.
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CPU resources needed for a simulation

Do we really really need that stuff? | scheme only including Geant4-based

“Detailed Simulation” .

@ T 1 &t & 04 9 &9 r 4
=] . W Stripping N T :
% S B User LHCb Preliminary ]
Ultra-fast =" - W MC:100% Detailed Simulation 1 Available
B = { | resources
) [ WLCG |
Detailed 4000 + c .
0% HLT 1| according to
Opportunistic L the planned
3000 Baseline .
T — Aggressive Fast Simulation Model funding
; scheme
20000 D .. S
Ultra-fast 1000 :‘ -------
Detailed [ What would
ok , - b o ) o : , - be achievable
2021 2022 2023 2024 2025 with
LHCb-FIGURE-2019-018
Year | excellent fast
and ultra-fast
simulations
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Training with synthetic (simulated) data

The most obvious training scheme is training the
Ideal process
Generative Models for the (ultra-)fast simulation to

mimic the detailed simulation. Geant4-based

<=_;st Simulation

Simulation
In practice, ‘
1. Generate a large dataset of Geant4-simulated data {Reconstructed }
2. Train a generative model to reproduce the connection | duantities

between the MC-truth and the reconstructed quantities

This approach is simple and works anywhere, but the fast simulation is an approximation
of the detailed simulation and inherit all its imperfections.

A fast simulation trained on synthetic data will be at most as good as the full simulation.
Artificial Intelligence for the Electron-lon Collider
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Training on real data

Training on real data is therefore appealing, [Ideal process } [Some other }
. process

but real data is often and

contaminated. Data-taking

Inefficiencies

Mis-reconstruction

“ %\
X

Events

®
Reconstructed
quantities

Some variable you are learning to reconstruct
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E

Dedicated selection strategies to avoid bias

LHCb detector

at%

Biases are avoided by applying selection criteria to some

particles and using for training some other, never relevant

to the selection procedure.

A special Data Acquisition Pipeline is necessary for the
calibration samples in order to:

® avoid bias at already at trigger level

® keep track of the variables reconstructed by the trigger — ------coooc-ferees

For example, in B* 5 (JAp — efe" )K= One can apply cuts o
the kaon and the positron to then train on the electron.

Trigger
% [ Hardware trigger ]

¥

PJ Tl (2019) 6:1

[ Software preselection

Full Reconstruction

. 1]
;[ Global PID
' L]

(

Unbias filter
i ]

Calibration sample
selection strategy

[Reconstruction ] [ Conversion ]

¥ ¥
Offline Online
version version

¥ ¥

[ Statistical background subtraction

efficiency determination

n Statistical analysis and
(PID performance tools)
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https://arxiv.org/pdf/1803.00824.pdf
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M. Boysiak, N. Kazeev - JINST 14 P08020 (2019)

Training on background-subtracted data
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Background contribution can be modeled
effectively studying the invariant mass of
some particle involved in the decay
process.

The effect of the contamination on any
variable uncorrelated to the mass can
then be statistically subtracted with the
sPlot technique.

The loss function of the machine learning algorithm is modified to be compliant with the
sPlot hypotheses and learn from the signal component while ignoring the contamination.
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https://arxiv.org/abs/1905.11719

I ML for LHCb Simulations A. Maevskiy et al. J. Phys.: Conf. Ser. 1525 (2020) 012097

No inheritance from Geant4 simulation

When this is done, the
inheritance from the

Example
modelling of the

RICH detectors at

detailed simulation is the LHCh experiment

broken.

kaon (real)
[ 1kaon (gen)
| ' pion (real)

[ pion (gen)

The two simulations are
then independent and can
validate each other.

0.025 4
0.020
1.015 4
0.010 4
0.003 4
T ™ 0,000

With models good enough, .= T
the fast simulation can be [l |

even “better” than the full ::t: Al ::ZEZ: /
simulation. o o LtV el | L

50 50 25 50
RichDLLk RichDLLk RichDLLk
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Stolen from M. Barbetti,

Simulating the LHCb Detector with GANS,
Goodness of the GAN model CCR Workuhop (2021) .
Pion Tracks
GAN quality is assessed by training one (or more) BDTs to ol e
distinguish the generated dataset from the one used for -
training. 2
We use the Kolmogorov-Smirnov distance between the s
two datasets as metric for the quality of the GAN training. LS RS TR T

Distribution of the class probability prer

Reference test-set

You can read it as an upper limit to the absolute error = ot
introduced by using the GAN model to measure the
efficiency of a requirement on a sample identical to that

KS distance: 0.12

used in training.

*. Larger errors are still possible considering corners of the phase space.

0.0 0.2 0.4 0.6 0.8 10
Class probability pres
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Deployment environment

The physics cases of the four LHC experiment are different, and so are the software
solutions, but in general:

® They are C++ based
® They are built with a complicated build system
e Rely on sophisticated schedulers to profit from multithreading

DNN libraries such as TensorFlow and PyTorch are designed to make the most out of

parallel computing: even when running on a single working-thread, the scheduling may
interfere with the underlying application.

Deployment does not just happen...
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<Want to deploy your ML model

Lucio Anderlini

Can you afford
frequent updates of
TensorFlow/Torch
dependencies?

Can you integrate
TF/Torch in the build
system of the

experiment?

No

“Transpile” the
% NN to Cé-+ with
RNNgenerator

Compile the NN
together with the
software stack?
(loading weights)

No

Export your model
to LWTNN format

Do your pipelines include

scikit-learn steps?

is a transpiler of

Integrate
TF/Torch in your
C++ using C++

CMS

APls

S

Integrate
TF/Torch in your

C++ using plain C
APls

Sept. 2021

o

some commonly-used
scikit-learn (and some keras)
steps to dynamically

linkable libraries (.so0).
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https://github.com/cms-sw/cmssw/tree/master/PhysicsTools/TensorFlow
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[J2016Data ¢ Lamarr
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Final validation is performed, for example, by 7 os St 4
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e . o g =
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I210III4I()I‘IGIOI‘I8|0II‘1(I)0|II12|OIII14!¢0I

decay modes not used for training.
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0.4

Note this is a kind of closure-test exercise 1| THCb Preliminary
because production mechanism, detector s r—
acceptance, tracking efficiency and resolution ol " o,

C < T,

as well as trigger and offline selection strategy
all contribute to the definition of the PID
distributions in both simulated and real data. .

o

L.

(]
_(E:%

51

0.2

Efficiency of TightProtonMVA
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Conclusion
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Conclusion 1

The Simulation of the collision
data for the experiments of
the Large Hadron Collider is
crucial for a number of
applications.

Data analyses are the most
important consumers of
simulated data. Scaling the
their demand to the future
runs shows that simulation is
not sustainable.

Lucio Anderlini Sept. 2021

?
?? ?

7’

2109: ALL SENTENCES ARE

JUsT THE WORD “USTAINABLE "~ 5

7

REPEATED OVER AND OVER. -

FREQUENCY OF %1
USE OF THE WoRD

! "N 0Q.1%
US ENGUSH TexT,
AS A PERCENTAGE OF
ALL WORDS, BY YEAR. (0,

SOURCE: GOOGLE NeRAMS

2061: “SUSTANABLE * OCCURS AN
AVERAGE OF ONCE PER SENTENCE

2036: "VSTANABLE " OCCURS
AN AVERAGE OF ONCE. PER PAGE

0.001%
0.000!%
OO(DOIxJ-. .
le% T T T T o ST B T T ) ¥, ] T T L — [ S— At Bears
960 1980 2000 2020 2040 2060 2080 2100 2120 2O
YEAR
THE WORD "SUSTAINABRLE" 1S UNSUSTAINABLE.
Artificial Intelligence for the Electron-lon Collider



I VL for LHCb Simulations

Conclusion 2

Many studies are ongoing to use machine learning to speed up the simulation, taking
different approaches:

e simulating the radiation-matter interaction faster
e simulating the response of some detector
e simulating the whole simulation pipeline to reconstructed analysis level quantities

The various solutions are all important as they can all help speeding the simulation up.
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